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Investigation of different stimulation
patterns with doublet pulses to
reduce muscle fatigue

Ruslinda Ruslee1,2 , Jennifer Miller1 and Henrik Gollee1

Abstract

Introduction: Functional electrical stimulation is a common technique used in the rehabilitation of individuals with a

spinal cord injury to produce functional movement of paralysed muscles. However, it is often associated with rapid

muscle fatigue which limits its applications. Methods: The objective of this study is to investigate the effects on the

onset of fatigue of different multi-electrode patterns of stimulation via multiple pairs of electrodes using doublet pulses:

Synchronous stimulation is compared to asynchronous stimulation patterns which are activated sequentially (AsynS) or

randomly (AsynR), mimicking voluntary muscle activation by targeting different motor units. We investigated these three

different approaches by applying stimulation to the gastrocnemius muscle repeatedly for 10 min (300 ms stimulation

followed by 700 ms of no-stimulation) with 40 Hz effective frequency for all protocols and doublet pulses with an inter-

pulse-interval of 6 ms. Eleven able-bodied volunteers (28� 3 years old) participated in this study. Ultrasound

videos were recorded during stimulation to allow evaluation of changes in muscle morphology. The main fatigue

indicators we focused on were the normalised fatigue index, fatigue time interval and pre-post twitch–tetanus ratio.

Results: The results demonstrate that asynchronous stimulation with doublet pulses gives a higher normalised

fatigue index (0.80� 0.08 and 0.87� 0.08) for AsynS and AsynR, respectively, than synchronous stimulation

(0.62� 0.06). Furthermore, a longer fatigue time interval for AsynS (302.2� 230.9 s) and AsynR (384.4� 279.0 s)

compared to synchronous stimulation (68.0� 30.5 s) indicates that fatigue occurs later during asynchronous stimulation;

however, this was only found to be statistically significant for one of two methods used to calculate the group mean.

Although no significant difference was found in pre-post twitch–tetanus ratio, there was a trend towards these effects.

Conclusion: In this study, we proposed an asynchronous stimulation pattern for the application of functional electrical

stimulation and investigated its suitability for reducing muscle fatigue compared to previous methods. The results show

that asynchronous multi-electrode stimulation patterns with doublet pulses may improve fatigue resistance in functional

electrical stimulation applications in some conditions.
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Introduction

Functional electrical stimulation (FES) systems are being
investigated for a variety of applications, ranging from
assistance in cardiovascular disease1 to motor recovery2

andmuscle strengthening after spinal cord injury (SCI).3–5

FES is commonly used in rehabilitation of individuals
with SCI to produce functional movement of paralysed
muscles (see Ragnarsson6 for a review). However, FES is
often associated with rapid muscle fatigue which becomes
the main limiting factor in its application.7

The rapid onset of FES-induced muscle fatigue
has motivated researchers to study the underlying
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mechanism and develop strategies to minimise fati-
gue.8,9 Modulating the FES parameters remains the
main approach to reduce muscle fatigue and maxi-
mise muscle performance.7 Several studies have
shown that the pattern of stimulation will affect
muscle fatigue.10,11

Current implementations of FES systems typically
use a constant stimulation frequency. Instead of using
a constant frequency during stimulation, several
studies have shown that frequency modulation can
delay the onset of muscle fatigue.12–15 The use of
stimulation containing trains of doublet pulses is a
promising strategy to overcome the various mechan-
isms of muscle fatigue, compared to single pulse
stimulation trains, as doublets are associated with
potentiation.16 Deley et al.17 suggest combining con-
stant frequency trains with a variable frequency train
at the beginning of the stimulation in order to
improve muscle performance.

FES is usually delivered for one muscle group via a
pair of stimulation electrodes, where all recruited motor
units are activated simultaneously. Multi-electrode
setups, which allow stimulation patterns to target dif-
ferent motor units, show some advantages in reducing
muscle fatigue.8,18,19 Bergquist et al.20 study aggregated
distributed stimulation where the stimulation covers
several different motor points of the muscle with
sequential activation. In these studies, stimulation is
delivered to the multiple electrodes in a pre-defined
sequence (‘sequential stimulation’). Delivering stimula-
tion patterns in a random order to the multiple elec-
trodes (‘random stimulation’) might affect the fatigue
characteristics. To our knowledge, this has not been
investigated before.

The effects of muscle fatigue are usually studied by
measuring the force output over time.12 In addition, the
neuromuscular activation can be taken into account by
measuring electromyography (EMG).21 When used in
combination with FES, it is not clear whether evoked
EMG is a useful measurement to predict muscle fati-
gue.22 To study the effect of stimulation on the muscle
contraction directly, ultrasound imaging of muscle
(sonomyography) can be used: ultrasound imaging can
be used to describe how the morphology of the muscle
varies over time. This non-invasive imaging technique
uses the behaviour of high-frequency sound waves tra-
velling through tissue to visualise internal structures.
Musculoskeletal ultrasound is a well-established tech-
nique which can measure both static and dynamic par-
ameters of the muscle.23 Static parameters describe the
morphology of the muscle in terms of size, shape and
structure (e.g. thickness, fibre length and pennation
angle). Dynamic parameters are the changes in these
measurements which occur during muscle contraction.
Several studies have found that a relationship exists

between the architectural parameters of the muscle and
measurements of torque produced by joints and EMG
recordings ofmuscle activity.23–25 Building on this prem-
ise, Shi et al.26 investigated the use of ultrasound ima-
ging as a tool to detect muscle fatigue and found that a
change in thickness occurred which coincided with mus-
cle’s inability to maintain its force during a constant
contraction. In this case, muscle fatigue was recorded
during voluntary contractions, and therefore additional
motor unit recruitment would occur and as a result the
rate of change of muscle thickness was considered a crit-
ical factor in the development of muscle fatigue. While
changes in muscle morphology during FES activation
are expected to be different, ultrasound imaging can
still provide valuable information about the behaviour
of the fatigue characteristics of muscle. In our study,
muscle thickness was measured using tracking software
based onDarby et al.,27 providing data on the behaviour
of the muscle during different stimulation patterns. As
the intermittent stimulation generated very fast, short
muscle contractions artificially, additional motor unit
recruitment was not expected to occur and so only the
maximum thickness of the muscle was used to relate
morphology to fatigue.

The aim of this study is to investigate how different
stimulation patterns affect muscle fatigue in able-bodied
participants. With additional information about the
changes in muscle thickness which will be recorded
using ultrasound imaging, perhaps the structural
muscle changes could be related to the effect of the
onset of muscle fatigue during FES applications of the
different stimulation patterns. Stimulation with doublet
pulses will be delivered via different multi-electrode pat-
terns: Synchronous stimulation (SS), where all electrodes
are activated synchronously, is compared to asynchronous
stimulation patterns where the electrodes are activated
sequentially (AsynS) or randomly (AsynR).

Methods

Participants and protocol

Eleven able-bodied volunteers (three male, eight
female, age 28.3� 3.2 years (mean� SD)) participated
in this study which was approved by the Ethics
Committee of the College of Science and Engineering,
University of Glasgow. All participants gave written
informed consent. Ten participants completed the
study, while one participant withdrew after the first ses-
sion due to hyper-sensitivity to stimulation.

Each participant was asked to attend three sessions
in total. During each session, one of the stimulation
patterns (SS, AsynS, AsynR, in randomised order)
was applied, using the procedures described below.
Sessions were separated by at least 20 h to ensure that
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fatigue from the previous session did not affect the
next session.

Apparatus and data acquisition

Figure 1 shows the setup used in this study. Biphasic
current controlled stimulation pulses were delivered
using the RehaStim v1 device (Hasomed GmbH,
Germany), controlled by a PC via a Universal Serial
Bus (USB) interface. Four pairs of 2.5� 4.5 cm elec-
trodes (PALS Platinum Axelgaard, USA, cut to
custom size) were placed over the gastrocnemius
muscle. A custom-made force platform was used to
measure the ankle torque which was recorded via a
data acquisition board (DAQ-6024E, National
Instruments, USA) with 20Hz sampling frequency and
12 bit resolution. Muscle morphology was recorded
using a 60-mm long linear probe connected to a portable
ultrasound system (LV7.5/60/128Z-2 with Echo Blaster
LS128-CEXT, Telemed Medical Systems, Italy).

Stimulation patterns

Each of the three different stimulation patterns were
delivered in separate sessions, carried out in a random
order. Doublet pulses with 6ms intervals were delivered
to the four stimulation channels in different patterns as
shown in Figure 2. The effective stimulation frequency
(40 Hz) was the same for all three protocols, i.e. a doub-
let pulse was delivered on at least one of the channels
every 25ms. For the SS protocol, all four channels were
activated synchronously every 25ms, whereas for the
AsynS and AsynR protocols, only one of the four chan-
nels was activated every 25ms. In the AsynS protocol,
the four channels were activated in a sequential order,
while the sequence in which channels were activated
was randomised for the AsynR protocol. The stimula-
tion pulsewidth was 300 ms throughout.

Procedures

Each session was divided into four sub-sessions: current
intensity selection, pre-fatigue test, fatigue trial and
post-fatigue test:

(i) Intensity selection: The current intensity was
increased from a minimum value (10 mA) in
steps of 2 mA until the maximum torque or max-
imum tolerable stimulation intensity was reached.
The torque was considered as the maximum when
it no longer increased with the increasing intensity.

(a)

(b)

(c)

Figure 2. Doublet pulses are delivered in three different

stimulation patterns: (a) asynchronous random stimulation

(AsynR) where channels are stimulated asynchronously in a

random order; (b) asynchronous sequential stimulation (AsynS)

where channels are stimulated asynchronously in a sequential

order and (c) synchronous stimulation (SS) where all channels

are stimulated synchronously. The effective stimulation frequency

was 40 Hz for all three patterns.

Ch 1

Ch 3

Ch 2

Ch 4

Ultrasound
transducer

Force Platform

Figure 1. Subject in sitting position with knee at an angle of 90�

and four pairs of surface electrodes placed over the gastrocne-

mius muscle. The ultrasound transducer is placed over the

medial gastrocnemius in order to record muscle movement

during FES (Ch 1, 2, 3, 4: Channels 1, 2, 3, 4).
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(ii) Pre-fatigue test: A single stimulation pulse fol-
lowed 10 s later by a short burst of stimulation
(5 s duration, frequency 40Hz) were delivered to
determine the twitch–tetanus ratio (TTR).

(iii) Fatigue trial: Stimulation trains of 300ms duration
were applied intermittently at 1 s intervals, for a
total of 600 s.20

(iv) Post-fatigue test: To assess fatigue recovery, the
same procedure as described in the pre-fatigue
test was repeated three times. The first post-fatigue
test was delivered immediately after the end of the
fatigue trial, while a rest period of 5min was
applied between the first and second, and between
the second and third post-fatigue tests.

A summary of the procedures is shown in Figure 3.

Data analysis and outcome measures

The following four outcome measures were defined:
normalised fatigue index (NFI), fatigue time interval
(FTI), pre-post twitch–tetanus ratio (�TTR) and
muscle deformation (x). These are described in detail
below.

NFI and FTI were calculated from the torque data
obtained during the fatigue trial and were analysed as
follows: for each contraction (consisting of 300ms
stimulation and 700ms rest), the maximum torque,
�, was obtained. The first 10 contractions were not
included to avoid initial artefacts (since during
these contractions, the intensity was ramping up
and we are only concerned with the contractions
generated by the selected intensity). The data were
then averaged over 20 contractions resulting in
30 torque values, Ti,

Ti ¼
1

20

X20i

k¼20ði�1Þþ1

�k, i ¼ 1 . . . 30 ð1Þ

An example of recording is shown in Figure 4. To
allow comparison of the different torque levels between

participants, the averaged torque, Ti, was normalised to
the average torque of the first 20 contractions, T1,

Tn
i ¼

Ti

T1
, i ¼ 1 . . . 30 ð2Þ

The NFI. It is defined as the normalised mean torque
during the final 20 contractions

NFI ¼ Tn
30 ð3Þ

It is a measure of how much the torque decreases
over the entire length of the fatigue trial, and is nor-
mally in the range ½0 . . . 1�. A larger value (closer to 1)
indicates less fatigue, i.e. that the torque level can be
better sustained for the duration of the trial.

The FTI. It is defined as the time taken for the normal-
ised torque amplitude (Tn

i ) to decrease to 80% of its
initial value (0:8Tn

1)

FTI ¼ T0:8 ðsÞ ð4Þ

The FTI is a measure of how fast fatigue occurs.
A smaller value indicates that fatigue occurs quicker.
If the NFI is small, it could mean that a large number
of fast fatiguing fibres are recruited repeatedly, leading
to a rapid early decline in torque.

In cases where the torque does not decrease to 80% of
its initial value within the duration of the trial (600 s), this
measure cannot be determined. In order to calculate
the group mean, two approaches were applied: (i) the
affected FTI value was replaced by 600 s (average
reported in Table 2 as FTI) and (ii) the affected
FTI value was excluded (average reported in Table 2
as FTI�600 s, together with the number of affected partici-
pants, NFTI4600 s).

Pre-post twitch–tetanus ratio (TTR). TTR is defined as
the ratio of the peak of the twitch response, Tw,
over the tetanus response, Tt,

TTRn ¼
Ttn
Twn

ð5Þ

Figure 3. Flowchart of the experimental procedures.
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where n 2 ½Pre,Post1,Post2,Post3� indicates the twitch–
tetanus test (cf. Procedures). A larger TTR is an indi-
cation that more muscle fibres are involved in the
contraction.28

The ratio of the post-fatigue TTR to pre-fatigue
TTR is the �TTR

�TTRnp ¼
TTRnp

TTRpre
ð6Þ

where np 2 ½Post1,Post2,Post3�. The overall �TTR is
the average of the �TTR values from the three tests.
The �TTR is a measure of the change in muscle fibre
activation, with a smaller value indicating a larger
decrease in fibre activation.

Muscle deformation. The ultrasound recordings were pro-
cessed with custom tracking software27 which used
automatic segmentation to define anatomically distinct
regions of the muscle, i.e. it separates the upper and
lower aponeuroses and the muscle tissue itself. This is
done by manually labelling frames with 19 marker
points along each of the upper and lower boundaries
of the deep and superficial aponeuroses to create a
point distribution model (PDM). This PDM captures
variations in shape and is used to create an active shape
model (ASM). The ASM is a widely used algorithm for
shape detection which performs a probabilistic search
for known shapes in new images and iteratively
deforms to fit the new image of an object. It is fitted
to new image frames by adjusting the PDM landmarks

after being initialised from its mean shape hypothesis.
The thickness of the muscle can be obtained from the
output of the tracking software and is defined as the
average distance between the superficial and deep apo-
neuroses as shown in Figure 5. Muscle deformation (x)
is defined as the percentage change of muscle thickness
(�T) relative to the muscle thickness at rest (T0)

x ¼
�T

T0
� 100 ð7Þ

The amount of muscle deformation, x, is related to
how much the muscle is contracting. A larger value
indicates a higher level of contraction, while a smaller
value of muscle deformation, x, indicates a less contrac-
tion (more fatigue).

Group analysis. Data were averaged over all participants,
and the mean and SD were calculated. For all test con-
ditions, the significant differences were tested using one
way analysis of variance with the p-value set at 0.05.
Multiple group comparisons were then tested in add-
itional analysis using Tukey–Kramer’s method.

Results and discussion

The current used for each of the three stimulation pat-
terns is summarised in Table 1, showing that the cur-
rent selected for the each protocol is very similar, with
the SS current being slightly larger on average than that

Figure 4. Example of an individual torque recording. The blue line shows the absolute torque, �, while the green line indicates the

torque averaged over 20 contractions, T (both left-side scale). The red line shows the normalised torque, Tn (right-side scale). The red

solid marker indicates the NFI, while the dashed line shows the FTI.
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of the asynchronous protocols. No significant differ-
ences were found between the selected stimulation
intensities, indicating that this method of selecting the
stimulation intensity did not affect the results. It is
expected that adjusting the intensity of each pattern
to produce the same initial torque would result in simi-
lar trends.

The progression of torque during the fatigue trial is
summarised in Figure 6. The absolute torque shown in
Figure 6(a) indicates that it is similar for each of the
different stimulation patterns. Normalised torque is
shown in Figure 6(b). The two asynchronous stimula-
tion patterns show less fatigue at the end of the trial
compared to synchronous stimulation. This finding is
consistent with a previous study using single pulse
stimulation.29

The outcome measures derived from the torque are
summarised in Table 2. This shows that NFI was higher
and FTI was longer for asynchronous stimulation com-
pared to synchronous stimulation. This indicates less
fatigue8,13,16,30,31 during asynchronous stimulation;

however, it should be noted that the FTI was only stat-
istically significantly longer when the time taken for fati-
gue to occur was assumed to be 600 s for participants
whose torque did not reach the 80% fatigue threshold.
For the SS protocol, this threshold was reached by all
participants, whereas for AsynS and AsynR, three and
six participants, respectively, did not reach the fatigue
threshold within the trial duration. Together with the
slightly larger NFI for AsynR compared to AsynS, this
indicates that AsynR might be the more effective
approach to reducing fatigue.

The �TTR indicates how muscle fibre recruitment
has changed after the fatigue trial compared to the
baseline measurement.28 The larger values for the asyn-
chronous stimulation protocols suggest that the fatigue
trial has less effect on fibre recruitment than sequential
stimulation; however, this result was not statistically
significant.

An example from one subject of how muscle thick-
ness changes throughout the trial is shown in Figure 7,
where each peak represents an increase in thickness as
the result of the stimulation turning on and then return-
ing to the resting thickness when the stimulation is
turned off.

The change in muscle thickness was normalised with
respect to the muscle thickness at rest and is referred to
as muscle deformation as described in equation (7).
Group results for muscle deformation at the start and
end of the fatigue trial are shown in Figure 8. Due to
recording problems, these data are only available for
eight of the 11 participants.

Muscle deformation had decreased at the end of all
three protocols compared to the beginning. This cor-
responds with a reduction in torque as the muscle fati-
gues, suggesting that the ultrasound analysis results
correspond to the fatigue behaviour of the muscle.
Deformation tended to be higher for asynchronous
stimulation patterns than for synchronous stimulation,
both at the start and at the end of the trial, supporting
the possibility of higher muscle fibre recruitment during
asynchronous stimulation. This is consistent with the
idea that asynchronous stimulation allows different
motor units to be targeted and for the overall recruit-
ment of muscle fibres to be more effective.32 The vari-
ation in muscle deformation is much larger during the
random asynchronous stimulation compared to both
the sequential asynchronous and synchronous stimula-
tion. As this is not seen during the sequential stimula-
tion, it can be concluded that this is not a result of
asynchronous stimulation but can be attributed to the
random order of activation. However, since this study
was tested on a small sample size, confirmation of these
findings might be worthwhile with a larger sample size.
The comfort of the stimulation patterns for participants
might limit their use in FES applications. Even though

Figure 5. Example of ultrasound image of medial gastrocne-

mius muscle showing the thickness when stimulation is off (a) and

stimulation is on (b).

Table 1. Summary of stimulation currents.

Current (mA) mean� SD min max

SS 35.4� 8.8 24 54

AsynS 31.8� 6.2 24 40

AsynR 30.8� 8.0 20 44

SS: asynchronous stimulation; AsynS: asynchronous stimulation patterns

where the electrodes are activated sequentially; AsynR: asynchronous

stimulation patterns where the electrodes are activated randomly.

6 Journal of Rehabilitation and Assistive Technologies Engineering



(a)

(b)

Figure 6. Measured torque along 600 s of FES, where each point represents the mean across all subjects, averaged over 20

contractions (20 s). Error bars represent the standard deviations: (a) absolute torque and (b) normalised torque.

Table 2. Values for NFI, FTI and �TTR.

Protocol NFI FTI ðsÞ FTI�600 s ðsÞ NFTI4600 s �TTR

SS 0.62� 0.06* 68.0� 30.5* 68.0� 30.5 0 0.809� 0.334

AsynS 0.80� 0.08 302.2� 230.9 174.6� 129.0 3 0.935� 0.335

AsynR 0.87� 0.08 384.4� 279.0 61.0� 34.2 6 0.885� 0.320

Note: All results are presented as mean� SD for all protocols. SS: asynchronous stimulation; AsynS: asynchronous stimulation patterns where the

electrodes are activated sequentially; AsynR: asynchronous stimulation patterns where the electrodes are activated randomly.

*Significantly different from AsynS and AsynR (p< 0.05).

Ruslee et al. 7



the position of the electrodes used in this study has been
reported as the most comfortable and effective,33 some
participants experienced discomfort and further
research should exercise caution, particularly with
those who are sensitive to electrical stimulation.

Conclusions

This study aimed to investigate the effect of different
stimulation patterns on muscle fatigue and relate this to
structural muscle changes observed with ultrasound

imaging. We have shown that patterned stimulation
with asynchronous distribution shows benefits in redu-
cing muscle fatigue. Asynchronous stimulation with
random distribution shows advantages compared to
asynchronous sequential stimulation and better per-
formance than synchronous stimulation. Hence,
random distribution appears to improve performance
by reducing muscle fatigue as well as increasing the
time before fatigue occurs. This is consistent with the
changes in muscle thickness observed from the ultra-
sound videos. Since this study was small in sample size,
further research is needed to investigate the role which
this plays to improve fatigue resistance in FES applica-
tions. In addition, different effective frequency of single
and doublet pulse stimulation might be worth further
research since the physiological effect on these distribu-
tions might have interesting similarities in different con-
ditions. We believe that AsynR could have potential for
clinical use, and we are planning to investigate this fur-
ther in a clinical study with SCI participants.
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